Developing the Future of Salt Mining and Hydrogen Storage in Atlantic Canada

October 2023 Corporate Presentation

CSE: VRTX | OTC: VTECF | FRA: AA3
Legal Disclaimer

This material includes "forward-looking" statements or information within the meaning of Canadian securities legislation and the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements relate to future events or the anticipated performance of Vortex Energy ("the Company" or "Vortex Energy") and reflect management's expectations, objectives or beliefs regarding such future events and anticipated performance. In certain cases, forward-looking statements can be identified by the use of words such as "further" "suggests", "further evidence", "potentially", "possibly", "indicates" or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "might", or "will be taken", "occur" or "be achieved", or the negative of these words or comparable terminology. Forward looking statements rely on a number of assumptions which management believes to be reasonable, including assumptions regarding the Company's ability to obtaining necessary financing, personnel, equipment and permits to complete its proposed exploration plans, and to identify additional properties for exploration.

Although the Company has attempted to identify important factors that could cause actual performance to differ materially from that described in forward-looking statements, there may be other factors that cause its performance not to be as anticipated. The Company neither intends nor assumes any obligation to update these forward-looking statements or information to reflect changes in assumptions or circumstances other than as required by applicable law. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those currently anticipated. The information contained in this document is drawn from sources believed to be reliable, but the accuracy and completeness of the information is not guaranteed, nor does the Company assume any liability. The Company disclaims all responsibility and accepts no liability (including negligence) for the consequences for any person acting, or refraining from acting, on such information.

This document is neither an offer nor the solicitation of an offer to sell or purchase any investment. Any unauthorized use, disclosure, distribution or copying of this document by anyone other than the intended recipient is strictly prohibited.

By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from any anticipated performance expressed or implied by the forward-looking statements. Such factors include various risks related to the Company's operations, including: without limitation, fluctuations in spot and forward markets for lithium and other metals, fluctuations in currency markets, changes in national and local governments in Utah and generally, the speculative nature of mineral exploration and development, risks associated with obtaining necessary operating and environmental permits, the presence of laws and changes in regulations that may impose restrictions on mining, limitations in respect of management time and resources, lack of personnel and equipment necessary to carry out the Company's proposed exploration and development and other delays (including in obtaining financing) which could result in the Company missing expected timelines, and the fact that the Company may not be able to identify additional mineral properties for acquisition or option on acceptable terms.

The scientific and technical information contained in this corporate presentation has been prepared pursuant to Canadian regulatory requirements set out in NI 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). All scientific and technical information has been reviewed and approved by Tabetha Stirrett, P. Geo., a consulting geologist of RESPEC Consulting, Inc., a consultant of the Company, and a "Qualified Person" as defined in National Instrument 43-101 – Standards of Disclosure for Mineral Projects.

For additional information regarding the scientific and technical information contained in this corporate presentation, including additional information regarding exploration results and information with respect to quality assurance and quality control and data verification, please see the technical report on the Robinsons River Salt Property entitled "Independent Technical Report on the Robinsons River Salt Property for Vortex Energy Corp." with an effective date of July 31, 2023 and the Company's most recent annual information form, in each case filed on the Company's SEDAR+ profile at www.sedarplus.ca.
Vortex Energy is focused on leveraging its assets for salt mining, hydrogen and energy cavern storage, and ammonia-to-hydrogen cracking technology.

Salt Mining
- Vortex Energy’s North American Salt project, nearby to Atlas Salt’s Deposit (908 Mt Indicated and Inferred - 96.9% NaCl)*
- Multiple salt structures identified on the property with access to infrastructure

Hydrogen & Energy Cavern Storage
- The East and West Salt Structures are some of the largest identified storage caverns on the East Coast of Canada
- Potential to hold approximately 800,000 tonnes of hydrogen in more than 60 caverns

Ammonia-to-Hydrogen Cracking Technology
- Vortex holds the license and rights to ammonia cracking reactor technology and membrane separator technology in development for the efficient conversion from ammonia-to-hydrogen
- Total Readiness Level (TRL) 3-4

*This resource estimate was independently prepared by APEX Geoscience Ltd. for Atlas Salt in accordance with NI 43-101. The Company has not had a qualified person verify this information, and this information is not necessarily indicative of the mineralization on the Robinsons River Salt Property.
Investment Highlights

Salt Structures on the Property
- Two large scale salt structures identified through geophysical and seismic exploration

Salt Market
- Production shortfall of 10 million tonnes with expected revenues to surpass US$32.41 billion by 2023
 Source: Persistence Market Research

Green Energy Infrastructure
- The East Coast of Canada has become an epicentre for green energy (i.e. wind) garnering international investment

Hydrogen Market
- Green hydrogen market set to help reshape global energy map, creating $1.4 trillion market by 2050
 Source: Deloitte Hydrogen Report

Team & Partnerships
- Comprised of experts in salt, cavern storage, government, and policy that can help shape the emerging landscape

Access to Global Markets
- Ideally located to service international markets including Europe and Asia with exceptional road, power, and port access
Why Salt?

Halite / Road Salt
- According to Allied Market, the global industrial salt market size was valued at **$14.2 billion in 2020**, with global industrial salt market forecast expected at a **CAGR of 3.2% from 2021 to 2030**
- Canada (3 MT) and the US (13 MT) are importing a combined **16 million tonnes** of de-icing salt
- **35 million tonnes** of salt is scattered on US roads annually

The total value of salt sold or used in North America was estimated to be **$2.3 billion**

Market Value

<table>
<thead>
<tr>
<th>Market</th>
<th>Value</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Salt</td>
<td>$720 million</td>
<td>Water treatment, drilling fluids, infusion, dialysis solutions, pharmaceuticals</td>
</tr>
<tr>
<td>Chemical Use</td>
<td>$220 million</td>
<td>Chlorine, poly vinyl chloride</td>
</tr>
<tr>
<td>Road De-Icing</td>
<td>$220 million</td>
<td>Winter road maintenance, commercial users, private households</td>
</tr>
<tr>
<td>Food Industry</td>
<td>$300 million</td>
<td>Food processing, baking industry, condiments & preservatives</td>
</tr>
</tbody>
</table>
Why Salt Cavern Storage?

Green Hydrogen storage in salt caverns has a number of **advantages**:

- **Indispensable chain link**
 - Underground storage helps to ensure security of supply of renewable hydrogen.

- **Flexibility**
 - Salt caverns offer flexibility regarding their injection and withdrawal cycles.

- **Safety**
 - Salt caverns allow for safe storage of large quantities of hydrogen under pressure.

- **Small Footprint**
 - Minimal disturbance at the surface.

Source: 2021 Infographic on the project Image: Mitsubishi Power Americas, Advanced Clean Energy Storage Project

Source: Rendering of the project with cutaway showing the salt caverns underneath Image: Advanced Clean Energy Storage I/Mitsubishi Power Americas
Hydrogen Market Overview

1,000 MW
The Advanced Clean Energy Storage project in Utah is aiming to be the world's largest energy storage facility for 1,000 megawatts of clean power by utilizing hydrogen in salt caverns - $504.4 million loan guarantee (DOE)

International
Canada and Germany agreed to build a new hydrogen supply chain across the Atlantic Ocean, the 2025 target date is for the first shipments across the Atlantic

$11 Trillion
The Hydrogen industry will generate $4 trillion if revenue from products such as fuel cell vehicles are counted - with the total market potential reaching $11 trillion by 2050

642 TWh
Global Hydrogen Storage portfolio to meet the global electricity and transportation storage required based on the vehicle, ship and plane assumptions

Source: CNBC Powering the Future 2020
Source: CBC Hydrogen Alliance Formed as Canada, Germany Agreement on Exports
Source: Bank of America
Source: Tesla, Master Plan Part 3
Hydrogen Industry News Highlights

<table>
<thead>
<tr>
<th>Company/Project</th>
<th>Description</th>
</tr>
</thead>
</table>
| Newfoundland Green Transition Fund $100M | Newfoundland launches green energy transition fund using money from energy companies. Green Transition Fund valued at ~$100 million.
Source: Globe and Mail |
Source: CBC |
| Haddington Ventures Announces $650M to Finance Green Hydrogen | Haddington Ventures, LLC has formed Haddinton ESP I, LP to provide construction equity for projects developed by the Advanced Clean Energy Storage Joint Venture (ACES Delta, LLC), which will be the largest green hydrogen platform in the world upon completion.
Source: OTPP |
| World Energy GH2 Pledges to Build a 1.5GW Plant Worth $12bn | World Energy GH2, known locally as Project Nujio-quonik to reflect the indigenous name for the Stephenville area, aims to house a total of 1.5GW of electrolysed capacity, powered by up to 3GW of associated onshore wind.
Source: Recharge News |
Project Location
Robinson River Salt Project

- 943 Claim Units - 235.75 Square KMs

- The Property is located approximately 35 linear km south of the town of Stephenville in Newfoundland and Labrador on the west coast of the island of Newfoundland

- Excellent access to highway and road access, power, and infrastructure

- Stephenville has a population of 6,600 and is the service centre for a catchment area of 25,000
Adjacent Properties

Atlas Salt (TSXV: SALT) Great Atlantic Salt Deposit is located 15 km north of the Property. The salt deposit contains an Inferred resource of 908 million tonnes grading 96.9% NaCl using a nominal bulk density of 2.16 g/cm³ (nominal de-icing market standard).*

Triple Point Resources (Private) Fischell Salt Dome is located to the North of the property and can potentially store approximately 180,000 tonnes of hydrogen.

The Robinsons River Salt Dome Project is approximately 127% larger in terms of hydrogen storage potential than the Fischell Salt Dome

*This resource estimate was independently prepared by APEX Geoscience Ltd. for Atlas Salt in accordance with NI 43-101. The Company has not had a qualified person verify this information, and this information is not necessarily indicative of the mineralization on the Robinsons River Salt Property.
Property Geology

The Property is hosted within the Bay St. Georges Subbasin (BSGSB), the northeastern extension of the Maritime Basin. The geology of the BSGSB of Newfoundland is broadly analogous to the geology in New Brunswick.

The Property warrants further exploration as a result of the following:

- The Property lies within the BSGSB, the host of economic-evaporite deposits and additional rare-earth metals;
- The Robinsons #1 drill hole confirmed the favourable stratigraphy to host evaporite deposits within the BSGSB;
- The updated geophysical interpretations on the Property have identified two major salt structures by their anomalous density lows, which are primary exploration targets;
- The mining of the deposits, depending on the quality of the salt, has the potential for direct commercial use and sale, including road salt or consumption as table salt with minimal mining processing; and
- The potential for cavern placement and hydrogen storage refining requires understanding the host rock formation’s quality, thickness and deformation properties. By advancing exploration efforts to include drilling the identified potential salt structure, the capacity for hydrogen storage can be better defined.

Figure 4: Location Map of the Robinsons River Salt Property, Newfoundland

Figure 5: Robinsons River Salt Project, Salt Thickness Map, Newfoundland
Contractor Partner

- Vortex Energy Corp is engaged with RESPEC, one of the only underground storage consultants that has direct experience with actual hydrogen salt storage caverns.

- RESPEC can support nearly every aspect of underground storage with in-house expertise and facilities.

- RESPEC has the world’s largest rock laboratory dedicated to the underground storage industry.

- Leveraging world renowned project experience from industry majors: Atco, Mitsubishi, Chevron, Praxair, Magnum, and others.

Source: Voegeli, S. (2022, August) RESPEC Website Presentation on Underground Storage and Capabilities
Phase I: 2023 Exploration Program

Seismic and gravity surveys have located at least two major salt structures that are potentially suitable for road salt exploration and hydrogen cavern development at the Robinsons River Salt Project, Newfoundland.

Each Salt Cavern if developed could exceed a storage volume of over 2 million meters3.

Highlights:
- Seismic and gravity surveys have located salt structures below the property.
- Salt caverns exceeding a storage volume of 2 million m3 per cavern can be developed.
- The maximum thickness of the salt strata is identified to be 1,700-1,800 meters in both salt structures.
- RESPEC recommends that core wells be drilled at the locations where the salt is the thickest.

Figure 4: Three-Dimensional Isopach Map Showing the Thickness of the East and West Salt Structures in Robinsons River Salt South.
Robinsons River Salt Project - 3D Geological Model

Based on available geological information, the East and West Salt Structures have a conservatively-estimated potential combined hydrogen storage capacity of up to 800,000 tonnes within more than 60 caverns.

- **East Salt Structure**: Can potentially hold an estimated amount of 550,000 tonnes of hydrogen in more than 35 caverns, based on conservative estimates.
 - Using conservative estimates, the hydrogen storage capacity is more than 70 million m³.

- **West Salt Structure**: Can potentially hold an estimated amount of 250,000 tonnes of hydrogen in more than 25 caverns, based on conservative estimates.
 - Using conservative estimates, the hydrogen storage capacity is more than 50 million m³.

Figure 5: Dimensions of the East and West Salt Structures in Robinsons River Salt South.
Pathway to Drilling

- Step 1 and Step 2 complete
- Drilling permit was submitted on August 24, 2023
- Estimated 45 days review period

Drilling Objective
- Drill two modern full-length core wells
- Conducting a full suit of geophysical wirelines surveys in the core wells along with a comprehensive sampling program
Phase II: Drilling
Scope of Work Developed & Managed by RESPEC
Robinsons River South Property

- Pre-Drilling & Well Design
 - Well Location and Geology
 - Well Objectives
 - Preliminary Design Considerations
 - Design Documentation
 - Preliminary Drilling Plan
 - Preliminary Rig Selection

- Permitting & Procurement of Services
 - Well Permitting & Regulatory Requirements
 - Exploration Approval Application
 - Procurement of Drilling Services

- Active Drilling Contractor Management
 - Planning Logistics
 - Project Management
 - Drilling Operations

- Geological Reporting
 - Postfield Program
 - Memoranda
 - Integrated Field-to-Office Server
 - Assessment Reports
 - Technical Program Reports

* Checked items on the list are items that have been completed.
The research team will conduct proof of concept experiments on core samples with the intent to design and implement the first field trial of hydrogen storage in domal salt in Canada.

- Two-year project with four research phases
- Project tasks will be conducted by at least 3 PhD students and one postdoc fellow under the supervision of Dr. Hassan Deghanpour
- Combination of cash and in-kind contributions
- Joint provincial and federal grant application(s)
Vortex Energy Leveraging Ammonia

Agriculture

Around 80% of all ammonia today is used for agricultural purposes. Ammonia and ammonia related infrastructure, as well as the safe handling practices required to handle ammonia are all well-established.

Vortex's Role: The co-location of Vortex's cracking and purification technology will allow a direct opportunity for agricultural participants to use ammonia as a power source as well as conversion to high-purity hydrogen.

Hydrogen Fueling

Many consider hydrogen fuel cell electric vehicles to other vehicles types with regards to decarbonization efforts. The hydrogen fuel cell electric vehicle market is expected to grow significantly with one of the major hurdles being the lack of hydrogen fueling stations.

Vortex's Role: Utilizing ammonia cracking and purification technology, the ammonia molecule can be 'broken apart' creating inert nitrogen which can be safely released to the atmosphere and pure hydrogen used as a fuel.

Maritime & Shipping

Several industry leaders in the maritime shipping industry have already made announcements and begun investing heavily in ammonia as a fuel source to meet these emissions reduction goals.

Vortex's Role: Utilizing ammonia cracking and purification technology, the ammonia molecule can be 'broken apart' creating inert nitrogen which can be safely released to the atmosphere and pure hydrogen used as a fuel.

Hydrogen Fuel Cells

The market for hydrogen fuel cells is expected to reach almost US $12 billion by 2030 at a CAGR of 25%. Hydrogen fuel cell companies have a direct interest in ensuring high purity hydrogen input streams so they can optimize the performance of their product.

Vortex's Role: Vortex's licensed technology includes a purification membrane which can be coupled with a hydrogen fuel cell product allowing them a greater market opportunity and increased sales.
Ammonia-to-Hydrogen Cracking Technology

The Company hold the rights to develop and sell ammonia-to-hydrogen cracking technologies (TRL 3-4)

Hydrogen's low energy density of 2.5 MJ/l makes it unrealistic as a long distance or long duration energy carrier. Hydrogen is difficult to store making it uneconomical for use. Requires extremely high pressure (30-70 MPa).

Ammonia is a better solution as it has higher volumetric energy density of 12.7 MJ/l.

Ammonia is easier to store:
- More reasonable temperature of ~33 degrees C making it cost effective.
- Ammonia can be used directly as a fuel or as a hydrogen carrier to move green hydrogen from one place to another.
License to a Proprietary Technology in Development (TRL 3-4)
High-purity Hydrogen Production by Ammonia Cracking

Vortex Energy holds the license and right to use the Ammonia Cracking Reactor Technology and Membrane Separator Technology for the efficient production of hydrogen from ammonia.

Upon completion of the research and development process, a commercial prototype producing high-purity hydrogen (>99.97%) at 200 kg/d or above will be built at a customer site to validate the complete system's operating performance in commercial settings. This will help us achieve a TRL of 7-9

Source: AmmPower, High-Purity Hydrogen Production by Ammonia Cracking Deck, Mar 2023, Novi, MI
January 2023

Ammonia Powered LED
demonstration to crack
ammonia for a hydrogen fuel
cell was completed in July
2022 with near 100%
conversion. Generating 100W
of power, the fuel cell was
used to power an LED light for
lab-scale demonstration
TRL 3-4

Sub Scale Tech Development
Validating 1 kg-H2/d
production by integrating the
prototyping subsystems,
including reactor and
membrane separators, etc
TRL 5

Sub-scale Tech Development
10 kg-H2/d. Finalize
subsystem designs at a higher
capacity and complete system-
level integration. Perform
system demonstration in
operational settings.
TRL 6

Commercial Demonstration
Build and demonstrate
hydrogen units in commercial
settings (scales 200 - 1000 kg-
H2/day).
TRL 7-9

Source: AmmPower, High-Purity Hydrogen Production by Ammonia Cracking Deck, Mar 2023, Novi, MI
Paul Sparkes
Chief Executive Officer

Paul Sparkes is an accomplished business leader and entrepreneur with over twenty-five years of experience in media, finance, capital markets and Canada’s political arena. Paul spent a decade as a leader in the broadcast and media industry as CTVglobemedia’s Executive Vice President, Corporate Affairs. He also held senior positions in public service, including with the Government of Canada as Director of Operations to Prime Minister, Jean Chretien, and as a senior aide to two Premiers of Newfoundland and Labrador. Paul was a Co-Founder and executive vice chairman at Difference Capital Financial and serves on a number of private and public boards. He is currently President of Otterbury Holdings Inc. and is an advisor and deal maker for growth companies in the private and public markets.

Jason Latkowcer
Corporate Development

Jason Latkowcer is a resource based executive with experience in junior mining, capital markets, taking companies public, assessing asset viability, and operating corporate growth. Over the past two years, Jason has worked as the Chief Executive Officer and Director of Pan American Energy Corp, a North American focused lithium exploration mining company. Prior to working in the capital markets, Jason worked in commercial business development for over 10 years in chemical and technology business development, managing a portfolio over $50 million per year in sales with some of the largest energy companies in North America. Jason is a Quantic School of Business and Technology EMBA graduate 2023 and also graduated from the University of Ottawa in 2011.

Piotr Kukialka
P.Geo - Technical Advisor

Piotr Kukialka, M.Sc, P.Geo, is a salt cavern specialist with broad experience across a variety of world class projects in Canada, the United States, and Europe. With over 20 years in industry, Piotr has provided technical, geological, and engineering support in the solution mining field for all types of salt caverns (storage, waste disposal, and brine production). He has worked for DEEP, Underground Engineering GmbH (Germany), and consulted for Encana / Cenovus, CNRL, CBW Engineering / SubTerra Engineering, and Pure Environmental. Mr. Kukialka is a Ph.D. candidate (2023) in solution mining and salina geology at the AGH University of Science and Technology, Krakow, Poland.

Shawn Ryan
Technical Advisor

Shawn grew up in Timmins Ontario and began his career in exploration in the early 80’s working with Kidd Creek Mine’s geophysics team and various other local contracting firms. In 1996 he focused his prospecting in the Dawson District looking for the sources of all the alluvial gold. His research led to perfecting soil sampling techniques that led him to mapping out many new gold discoveries. He has been honored with the Yukon Chamber of Mines Prospector of the Year in 1998 for the Horn, high grade gold skarn discovery in the Tombstone Mountains north of Dawson City, and with RyanWood Exploration in 2009 for initiating what is now called “The Yukon Second Gold Rush”. Shawn received the Spud Huestis Award for excellence in prospecting and mineral exploration from AME BC in 2010 for the White Gold Discovery (Kinross). In 2011 Shawn was also honored with the Bill Dennis, Prospector of the Year Award by the PDAC for prospecting success with a Canadian discovery on the White Kinross) and Coffee Goldcorp) Projects. During the last 10 years (2012-2022) Shawn and the GroundTruth Exploration team have been working on developing new exploration techniques (Drones to Drills “) that have dramatically dropped the exploration cost by roughly 70%, can be worked all year round and is extremely environmentally friendly.
An experienced and well-respected Newfoundland and Labrador-based business leader and entrepreneur, Robert Crosbie is the Chair of Crosbie and has significant experience leading growth-oriented companies. Rob started with the family business in 1991 and led the company’s growth in real estate development and industrial services. Rob Crosbie is a member of the Order of Canada (2018), holds an Honorary Doctor of Laws degree from Memorial University (2018), and is a member of the Newfoundland and Labrador Business Hall of Fame (2016). Rob has also received Ernst & Young’s Atlantic Canada Entrepreneur of the Year Award (2016), Memorial University’s J.D. Eaton Tribute Award (2014), and Memorial University’s Faculty of Business Administration Alumnus of the Year Award (2003).

After retiring from his position as Premier of Nova Scotia, the Hon. Stephen McNeil joined Cox & Palmer in the role of Strategic Business Advisor to the Halifax office. His national and international insights and experience help our clients and our lawyers, recognize and participate in new opportunities throughout Atlantic Canada and beyond. Until his resignation in Spring 2021, Stephen was the dean of Canadian premiers, having held the office since 2013. In total, he served for 18 years in the Nova Scotia Legislature and was re-elected five times by the voters of Annapolis. During his time in provincial government, Stephen served as Minister of Aboriginal Affairs, Minister of Intergovernmental Affairs, Minister of Planning and Priorities, Minister of Regulatory Affairs and Service Effectiveness, Minister responsible for Military Relations, Minister responsible for Social Innovation and Integrative Approaches, and Minister responsible for Youth. He was Leader of the Official Opposition in the Nova Scotia House of Assembly from 2009 until 2013.

With over 20 years of experience in climate and clean technologies, and other relevant experience as a lawyer and in public policy and government, he brings a wealth of experience to organizations. His current focus is helping lead companies in the emerging carbon (markets, credits, production and removal) and climate/clean tech space, capital raising, investing and advisory. Current, active roles include CEO, Cero Technologies, Senior Advisor, Fort Capital and Partner, PacBridge Capital Partners. Stephen serves on the Board of Sustainable Development Technology Canada (SDTC), DevStream Carbon Credit Investing and Cero Technologies. Previously, he served as Vice-Chair, Fuel Cells Canada (FCC); Chair, Canadian Transportation Fuel Cell Alliance (CTFCA); Steering Team & Planning Committee – California Fuel Cell Partnership (CaFCP); Member, US Dept. of Energy’s Hydrogen and Fuel Cell Advisory Panel; Director, National Hydrogen Association (U.S.) & Director, US Fuel Cells Council.

George J. Furey is a former Senator from Newfoundland and Labrador, was the longest serving member of the Canadian Senate at the time of his retirement earlier this year. He most recently served as the Speaker of the Senate of Canada. Mr. Furey holds three degrees from Memorial University and a law degree from Dalhousie Law School. During his career as an educator, he was a teacher with the Roman Catholic School Board in St. John’s, a Supervising Vice-Principal with the Port-au-Port Roman Catholic School Board and a Supervising Principal of the Placentia-St. Mary’s Roman Catholic School Board. Mr. Furey was called to the Bar of the Law Society of Newfoundland and Labrador in 1984 and was subsequently named a partner at the St. John’s law firm of O’Brien, Furey & Hurley. While in his second year of practicing law, he successfully challenged the Criminal Code language on sexual assault and proved that with the advent of the Canadian Charter of Rights and Freedoms, certain Criminal Code provisions were unconstitutional. He also served as Queen’s Counsel in 1996. He has been committed to advancing the interests of Newfoundlanders and Labradorians.
Capitalization Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Issued & Outstanding</td>
<td>70,633,437</td>
</tr>
<tr>
<td>Options & RSRs</td>
<td>6,300,000</td>
</tr>
<tr>
<td>Warrants ($0.75)</td>
<td>13,643,916</td>
</tr>
<tr>
<td>Fully Diluted Issued & Outstanding</td>
<td>90,577,353</td>
</tr>
</tbody>
</table>

*C*ap Table as of Sept 2023
Developing the Future of Salt Mining and Hydrogen Storage in Atlantic Canada

CSE: VRTX
OTC: VTECF
FRA: AA3

Phone
(778) 819-0164

Email
info@vortexenergycorp.com